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Abstract. Short (<1 sec) duration depolarization of
Xenopus laevis oocytes to voltages greater than +40
mV activates a sodium-selective channel (Nay) with
sodium permeability five to six times greater than the
permeability of other monovalent cations examined,
including K", Rb",Cs", TMA ™, and Choline . The
permeability to Li " is about equal to that of Na ™.
This channel was present in all oocytes examined. The
kinetics, voltage dependence and pharmacology of
Na, distinguish it from TTX-sensitive or epithelial
sodium channels. It is also different from the sodium
channel of Xenopus oocytes activated by prolonged
depolarization, which is more highly selective for
Na ™, requires prolonged depolarization to be acti-
vated, and is blocked by Li™. Intracellular Mg*" re-
versibly inhibits Na, whereas extracellular Mg>"
does not have an inhibitory effect. Intracellular Mg>"
inhibition of Na,, is voltage dependent, suggesting
that Mg?" binding occurs within the membrane field.
Eosin is also a reversible voltage-dependent intracel-
lular inhibitor of Na,, suggesting that a P-type ATP-
ase may mediate the current. An additional
cytoplasmic factor is involved in maintaining Nay
since the current runs down in internally perfused
oocytes and excised membrane patches. The rundown
is reversible by reintroduction of the membrane patch
into oocyte cytoplasm. The cytoplasmic factor is not
ATP, because ATP has no effect on Na, current
magnitude in either cut-open or inside-out patch
preparations. Extracellular Gd* " is also an inhibitor
of Na,. Na, activation follows a sigmoid time course.
Its half-maximal activation potential is +100 mV and
the effective valence estimated from the steepness of
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conductance activation is 1.0. Na, deactivates mono-
exponentially upon return to the holding potential
(—40 mV). The deactivation rate is voltage dependent,
increasing at more negative membrane potentials.
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Introduction

Oocytes of the South African clawed toad Xenopus
laevis are widely used as a system for expression and
characterization of exogenous membrane channels
[24]. Such studies require an understanding of the
endogenous channel activity present in the oocyte
membrane. A variety of endogenous Xenopus oocyte
channels have been described. These include various
chloride channels having different voltage depend-
ence and pharmacology [1, 3, 11, 17, 27, 29, 30], at
least one kind of calcium channel [14, 18], potassium
channels [7, 8, 12, 15], hemi-gap-junctional channels
[2, 10] and stretch activated cation channels [16, 26,
31, 32]. In addition, at least three different passive
sodium currents are known to be present in Xenopus
oocytes. One of them is mediated by an epithelial-like
amiloride-sensitive sodium channel [23, 28]. The
whole-cell current produced by this channel is small
(tens of nanoamperes per oocyte) and is inhibited by
10 pm extracellular amiloride. Another sodium chan-
nel found in Xenopus oocytes is TTX-sensitive [19]. It
is inhibited by nanomolar concentrations of TTX,
activated by depolarization positive to —40 mV and is
inactivated within a few milliseconds. A third type of
sodium current is activated by prolonged depolariza-
tion [4, 5, 6, 20, 22]. It is characterized by its slow
induction rate [6], is strongly selective for sodium and
is inhibited by Li ™.
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Fig. 1. Examples of the time course of current activation when the
membrane voltage is stepped to positive potentials. The record in (4)
was obtained from an on-cell patch of Xenopus oocyte membrane
using a small (~2 MQ patch electrode. Panel (B) shows that the
current remains steady for long times after activation. (Inside-out

In this paper we report the characteristics of an
endogenous oocyte sodium channel (Nay) with novel
biophysical properties and pharmacology. Na, differs
from the amiloride-sensitive sodium channel in that it
is not inhibited by 100 um amiloride and requires
depolarization to voltages greater than +40 mV to be
activated. It is also different from the TTX-sensitive
Na™ channel in that it is not inhibited by high con-
centrations of STX and does not inactivate. In our
tests of excised patches the current remained stable
for over a minute. It also can be distinguished from
the sodium channel activated by prolonged depo-
larization in that it has a fast time course of activa-
tion and is not inhibited by Li™.

Materials and Methods

Stage V-VI oocytes were obtained from adult female African clawed
toads, Xenopus laevis (Nasco, LaCrosse, Wisconsin) [9]. Oocytes
were treated for two hours with 2 mg/ml type IA (Sigma, St. Louis,
MO) collagenase dissolved in Ca"-free oocyte Ringer solution (in
mm): 87.5 NaCl, 2.5 KCl1, 1.0 MgCl,, 5.0 TRIS/HEPES, pH = 7.6.
The collagenase treated oocytes were manually defolliculated and
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patch configuration). In (C) the size of the patch pipette was increased
(200 kQ). In (D) the record was obtained using a two-microelectrode
voltage clamp. Pipette and bath solutions were (in mm): 100 NaCl, 20
TEA Sulfamate, 10 MgSOy, 20 HEPES, 2 EGTA-TMA, pH = 7.5
(Similar results were obtained without TEA™ in the solutions).

kept at 4°C in normal Barth saline solution of the following com-
position (in mm): 87 NaCl, 3 KC1,1MgCl,, 5 TRIS/HEPES, titrated
to pH 7.6 with NaOH; 50 units/ml penicillin and 50 mg/ml strepto-
mycin (Sigma). Oocytes were used within 4 days after defolliculation.

For patch-clamp experiments, oocytes were prepared by man-
ual removal of the vitelline membrane after 5 to 15 minutes of
incubation in devitelinizing solution (mm): 100 KCI, 109 NaCl, 5
HEPES, 1 MgCl,, 2 CaCl,, pH=7.4. Glass pipettes (100 ul
micropipettes, VWR Scientific, West Chester, PA) were pulled to a
1-20 pm diameter tip, depending on the intended experiment, and
coated with silicon elastomer (Sylgard, Dow Corning, Midland,
MI). The pipette tips were fire-polished against an electrically
heated 3-mm wide heating filament (Sutter Instruments, Novato,
CA) covered with melted glass. The data from the clamp amplifier
(BC-525C, Warner Instruments, Hamden, CT) were digitally
sampled by using an ITC-16 AD converter (Instrutech Corpora-
tion, Port Washington, NY) using HEKA Pulse data acquisition
software (HEKA elektronik, Lambrecht/Pfalz, Germany). Sigma
Plot 5.0 software (Jandel Scientific, Corte Madera, CA) was used to
plot and analyze the data.

Cut-open oocyte clamp experiments were performed according
to Taglialatela et al. [25]. In our modification of this method a
quartz canula was connected via PE10 tubing to a small chamber
positioned ~5 cm above the level of the oocyte. The intracellular
solution flow rate was controlled by changing the height of this
chamber. The data from the CA-1 High Performance Oocyte
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Fig. 2. Na, is sensitive to removal of intracellular sodium. (A4)
Inside-out patch current in the presence of symmetrical 100 mm
Nat! and 100 mm Na;~ solutions. (B) Membrane current in the
same patch after intracellular Na ™ was replaced with TMA ™. (C)
The difference current (4-B). (D) Current-voltage relationship at
the end of 1-sec depolarizing pulses in 100 mm [Na *]; (filled circles)
or 100 mm [TMA™]i 0 mm [Na™J; (empty circles). These current-
voltage data were obtained by subtracting a linear component of
the total current and are presented here as the algebraic sum of four

Clamp (Dagan Corporation, Minneapolis, MN) were processed in
the same way and with the same hardware as in patch-clamp ex-
periments.

For two-microelectrode experiments, we used an OC-725 volt-
age clamp amplifier (Warner Instruments). The current and voltage
signals were sampled using a TLI-100 kHz AD converter (Axon
Instruments, Burlingame, CA). Pclamp6 software was used to
collect data and to perform the initial analysis of the results. Data
were further analyzed using Sigma Plot 5.0 software. With the
exception of Figs. 1 and 2, the data reported in this study were
obtained by removing capacitance and leak currents. In order to do
that, a series of five 20-mV prepulse traces were scaled and sub-
tracted from the test-pulse record.

Results

As shown in Fig. 1, depolarization of Xenopus oocyte
membrane to potentials positive to +40 mV activates
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independent patches. Error bars in D represent square roots of the
sums of variances of the individual records. The total subtracted
linear conductance was (sum of four patches) 225 + 8 pS and
reversal potential —1.8 + 1.8 mV reflecting passive patch currents.
Pipette solution in (4) and (B) contained (in mm) 100 NaCl, 20
TEA Sulfamate, 10 MgSO,, 20 HEPES, 2 EGTA-TMA, pH = 7.5.
The bath solution in (4) had the same composition as the pipette
solution, whereas in (B) 100 mm NaCl was replaced with 100 mm
TMA ClL

a current with the following characteristics: the cur-
rent does not activate until the membrane potential is
brought above ~+40 mV, does not inactivate (for
durations up to 1 min) and deactivates rapidly upon
repolarization. Since various anion and cation chan-
nels previously described in Xenopus oocytes have
been shown to have a similar voltage dependence, we
examined the ion selectivity of this depolarization-
activated current in order to characterize it further.

Using the inside-out patch-clamp technique we
found that substituting K™ or TMA " for intracel-
lular Na™ virtually abolished the outward current
activated by membrane depolarization (Fig. 2). This
result suggested that Na ™ carries the current acti-
vated by strong depolarization (hereafter we will refer
to it as Na,—sodium-dependent endogenous Xenopus
current).
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Fig. 3. Relative permeabilities of different monovalent cations de-
termined by using the cut-open oocyte technique. In panel (4) the
reversal potential was determined after lowering of the extracellular
sodium concentration from 110 mm to 0 mm in three intermediate
steps: 55 mm, 22.5 mm and 11.25 mm. The regression lines were
obtained by fitting the constant-field equation (Eq. 3) to the data
with P,/Pn, being a free parameter and where ““X” is a substitute
ion. Panel (B) shows the permeability ratio Py/Pna,. Internal so-

To further investigate the ion selectivity of Na,,
we studied the effect of extracellular ion substitutions
on the reversal potential of the current. The cut-open
oocyte technique was used because of its good tem-
poral resolution and the ability to control both in-
tracellular and extracellular ion composition. Current
records were obtained after depolarization to +120
mV for 100 msec and then stepping to potentials
varying from —60 mV to +60 mV in 20-mV incre-
ments. The deactivating-current traces (similar to
those shown below in Fig. 5D) were fit with a single
exponential function (Equation 1) to obtain time-zero
values of Na, at each membrane potential.

I, = I + Ipe= =1 (1)

where ¢, is the time at the start of repolarization.
These instantaneous [I-V relationships I,(V) =
Iy(V)+ I(V) were further fit by a polynomial
function (Equation 2)

L=Y A4(V=Vy) i=1,....n (2)

where n is the number of voltage levels in the data set
and A; is a free parameter. This function estimates the
reversal potential V; more accurately than a linear
function because of the slight outward rectification of
the instantaneous /-V relationship.

Six different monovalent cations were used as
Na " substitutes: Li", TMA ", Choline™ K ', Rb",
and Cs . The intracellular solution contained 70 mm

A Vasilyev et al.: A Novel Na* Channel in Xenopus oocytes

B

1.2

10 - C—3 Na+

) - i
<3 Choline+
0.8 - tzzz2 TMA+
s KX Cs+

Al 06 4 oo K+
VR I Rb+
[a W

0.4 -

02 7 __“‘__

0.0 L1

lution contained (in mm): 70 KCl, 30 NaCl, 5 Na,EDTA, 5 HE-
PES, pH = 7.5. External solution contained (in mm): 1 MgCl,, 2
CaCl,, 5 HEPES, pH = 7.5 and various concentrations of NaCl —
110, 55, 22.5, 11.25 and 0 mMm. Sodium was replaced by different
monovalent cations. The Na?-free data are shown in panel (4) but
plotted at a value [Na"],/[Na*]; = 0.03 for convenience of pres-
entation on this logarithmic scale. The reversal potential value of 0
was used to obtain the fit shown.

K™ not only to simulate the normal intracellular ion
composition, but also to enable us to resolve in-
wardly-directed deactivating currents as the extracel-
lular Na™ concentration was lowered. The constant
field equation (Equation 3) was fit to the data.

RT, [Nal, + o[X],

Fror = F 1 Nal, + BIK, ©
The only free parameters in this equation (o and f3)
represent the relative permeabilities of the ion of
interest (X) or of potassium respectively (¢« = P,/ Pna
and i = Px/Pn,) When potassium was used to
substitute for Na™ externally, the best fit yielded
equal values of o« and f as expected from their defi-
nition. Figure 3 shows that Na, is sodium-selective.
Similar to the TTX-sensitive Na® channel, Li"
permeates as well as Na ™, but Na, is insensitive to a
high concentration of STX (Figs. 4 A—C). Na, also
shows no sensitivity to extracellular amiloride
(100 um), an inhibitor of epithelial sodium channels
(Fig. 4).

To examine the voltage dependence of steady-
state Na, conductance, we performed double-expo-
nential fits to the activation traces (with the leak
component subtracted as described in Methods) as
shown in Fig. 5A. The values of G, from Equation 4
were then normalized to the extrapolated value at
+200 mV.

I(t)= (Goo — Ael=n) — Be*"(’*“’)) / (V=Ewev)  (4)
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Fig. 4. STX and Amiloride have no effect on Nay. The cut-open
oocyte preparation was used for this experiment. In panel (4) Na,
current is shown before the addition of saxitoxin. Panel (B) shows
Nay current after 300 pm STX was added to the extracellular medium.
Panel (C) shows the difference (4)-(B). In panel (D) filled circles in-
dicate currents averaged over the last 5 msec of 100-msec depolarizing

The results are plotted in Fig. 5B as filled circles.
Alternatively, the conductance values were measured
as instantaneous-current (time-zero) values by fitting
deactivating traces with a single-exponential function
upon return to the holding potential (—40 mV). These
values were directly proportional to the conductance
at the corresponding depolarizing voltage since all
deactivating currents were measured at single (—40
mV) voltage. The time-zero values of /() normalized
to the extrapolated value at +200 mV are shown in
Fig. 5B as filled circles. Equation 5 was fit to the
normalized time-zero current data.

G(V) = Gmax (1 —+ eidF(V*Vl/l)/RT> (5)

The values of § (dielectric coefficient) estimated by
these two methods were 1.04 £ 0.08 and
0.99 + 0.07, respectively, consistent with channel

Current / nA
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pulses at various voltages normalized to the value obtained at + 140
mV. Open circles show the same currents after addition of 100 pum
external amiloride. They are also normalized to the value obtained at
+ 140 mV before the addition of amiloride (n = 4). Internal solution
(in mm): 70 KCl, 30 NaCl, 5 Na,EDTA, 5 HEPES, pH = 7.5. Ex-
ternal solution: 110 NaCl, 1 MgCl,, 2 CaCl,, S HEPES, pH = 7.5.

gating being governed by a single charge crossing the
entire membrane field. The corresponding values of
Vi were 98.3 £ 2.3 mV and 99.4 + 2.4 mV.

MODIFIERS OF Nay

Na, is relatively insensitive to extracellular Mg>". In
contrast, intracellular Mg?" is a potent inhibitor of
Nay, as shown in Figs. 64 and B. We investigated the
dose dependence of Mg?" inhibition. The results are
shown in Figs. 6C and D. The data are well described
by Equation 6 that assumes a single binding site for
Mg " inhibition of Nay:

i = (Kn + aMgi])/(Mg] + K) (6)

(i is the normalized steady-state current plotted in
Fig. 6C, K,, is the Mg>" binding constant, a is
the ratio of Na, conductance with Mg?" bound to
the inhibitory site to Na, conductance in Mg " -free
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Fig. 5. Time course and voltage dependence of Na, current. In
panel (A4) the dotted lines represent Na, current; the solid lines,
exponential fits to these data = I, — Ae “~) — Be~alt=t)
Pulses were made to a series of voltages ranging from +20 mV to
+140 mV in 20-mV increments from a holding potential of —40
mV. Panel (B) shows the estimates of the voltage dependence of
steady-state total conductance of Na,. Filled circles—predicted
steady-state I-J” data were used to calculate the G-V relationship.
Open circles, the G-V relationship was determined directly by
measuring the instantaneous /-} after return to a fixed voltage of

conditions). The values of K,, can be plotted
as a function of membrane voltage and fit using
Equation 7.

K, =k, oSFVIRT

(7)
The values of ¢ (dielectric coefficient) and k,, ob-
tained from the fit were 6=-0.33 £+ 0.02 and k,
3.0 £ 0.2 mm.

Note that intracellular Mg> " not only affects the
magnitude of the steady-state current but also
changes the kinetics of current activation as shown in
Figs. 6E and F. When no internal Mg®" is present,
Na, activates with a sigmoid time course with ~1
msec delay before activation. On the other hand,
when intracellular Mg " is present, the time course is
a double-exponential function of time without a sig-
moid foot.

Normalized conductance
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—40 mV from various membrane potentials. The solid and the
dotted lines represent the least-square fits of a Boltzmann function
to the corresponding data. In panel (C) the Nay activation traces
are shown on an expanded time scale to show that activation of
Na, follows a sigmoidal time course. Panel (D) shows that the
deactivation rate of Na, is voltage dependent. A prepulse was made
to + 120 mV and subsequent test pulses were from —60 mV to + 60
mV in 20-mV increments. Internal solutions (in mm): 70 KCl, 30
NaCl, 5 Na,EDTA, 5 HEPES, pH = 7.5. External solutions: 110
NaCl, 1 MgCl,, 2 CaCl,, 5 HEPES, pH = 7.5.

Na, is inhibited by intracellular eosin (Fig. 7).
The normalized data at various membrane voltages
can be fit assuming a single intracellular binding site
for eosin inhibition. Remarkably, at all membrane
potentials, the maximum amount of eosin inhibition
of Nay is one half, indicating that eosin is a partial
inhibitor of the current. If Equation 6 is fit to the data
at various voltages (eosin in place of Mg>"), the
values of a fall within the range 0.43 to 0.55. Here we
used a single value of « to fit the entire data set. K,
values appear to be dependent on voltage, suggesting
that the eosin-binding site is located within the
membrane field. These values are plotted in panel 75.
The curve represents a least-squares fit of Equation 7
to the data and yields values of 6=0.47 + 0.03 and
kn=29 £+ 0.4 um.

Extracellular Gd** also inhibits Na,. But despite
the presence of a high-affinity component of Gd**
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Fig. 6. The effect of intracellular Mg®>* on the magnitude and ki-
netics of Na,. This experiment was done using the cut-open oocyte
technique. Voltage pulses were made from the —40 mV holding
potential to a series of voltages +20/+ 140 mV in 20-mV incre-
ments. (4) Na, before the addition of 10 mwm intracellularMg? " . (B)
Na, current was measured 6 min after 10 mm Mg?" was added to
the intracellular medium. (C) The magnitude of Nay curret is plotted
as a function of intracellular [Mg”]. The values are normalized to
the current magnitude when no intracellular Mg>* was present.
This procedure was repeated at various membrane voltages (shown

inhibition (Fig. 84,C), the amount of Gd** required
to block most of Na, is relatively high (K, =
246 + 20 um). This value is much larger than,
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using different symbols). Smooth curves represent the least-square
fits to the data using equation (6). Panel (D) shows the estimated
values K, as a function of membrane voltage. The smooth line is the
least-square fit of equation 7 to the data. The estimated parameter
values are k,,, = 3.0 £ 0.2mm and 6 = —0.33 £ 0.02. (E) The time
course of activation of Na, has a sigmoidal shape in 0 mm [Mg? " ;.
(F) The activation time course is faster, and the curve shape is ex-
ponential in 10 mm [Mg“]i. Intracellular solution (in mm): 70 KCI,
30 NaCl, 5 BAPTA, 5 HEPES, pH = 7.5 with up to 10 mm MgCl,
added. The external solution was the same as in Figure 5.

for example, the amount of Gd*>* needed to half-
inhibit the stretch-activated channels in Xenopus
oocytes.
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repeated at various membrane voltages. The smooth curves rep-
resent the least-square fits to the data using equation 6 ([eosin]; in
place of [Mg>"];). The estimated values of K, are plotted as a

In cut-open oocyte experiments of long dura-
tion (more than 1 hour) a slow rundown of Na, was
observed that was independent of the presence of
intracellular Mg?*. This slow rundown suggested
that a cytoplasmic factor was required to maintain
Na,. This hypothesis was tested by using the excised
inside-out patch technique as shown in Fig. 9. A
large-diameter patch pipette was used (20 pm).
Upon patch excision (Fig. 94 (I-IV)), the magni-
tude of Na, decreased within a few minutes.
When the membrane patch was moved back into
the intracellular medium (¥), a rapid recovery of
Na, took place. This cytoplasmic factor does not
appear to be ATP or its Mg’ complex, as explained
below.

In the experiment shown in Fig. 9B the cut-open
oocyte was perfused for 4 hours with a solution
containing no Mg®>* or ATP. Rundown of Na, was
observed. The shape and the magnitude of Na, were
then examined under a variety of conditions. First, |
mmMm MgCl, was applied intracellularly and inhibition
of Na, was observed (/). Na, recovered after Mg2+
was washed out (/7). Second, the addition of 5 mm
Na,ATP had no effect on Na, (/1]). After Na,ATP
was replaced with 5 mm MgATP, a decrease in Nay
current magnitude occurred, consistent with the effect
of Mg?* alone (IV). Na, current recovered to its
initial level when 0 mm ATP, 0 mm Mg2+, 5 mm
EDTA solution was used to remove free Mg>" from
the intracellular medium (). The results of this ex-
periment indicate that it is unlikely that either ATP or
its magnesium complex is the cytoplasmic factor that
prevents Na, rundown.
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function of membrane voltage in panel (B). The smooth lines rep-
resent the least square fit of equation 7 to the data. The estimated
values are k;, = 2.9 = 0.4 mm and 6 = 0.47 £ 0.03. Internal
solutions (in mm): 70 KCl, 30 NaCl, 5 Na,EDTA, 5 HEPES, pH =
7.5. Various amounts of eosin were added to give the indicated
concentration. External solution: 110 NaCl, 1 MgCl,, 2 CaCl,, 5
HEPES, pH = 7.5.

Discussion

The pharmacology, voltage dependence, and ion se-
lectivity of Na, indicate that it is a novel form of Na ™
conductance that is endogenous in Xenopus oocytes.
There are certain similarities between Na, and the
Na™ current activated by prolonged depolarization
of oocyte membrane [4, 5, 6, 20, 22]. First, both
currents require depolarization above +40 mV to
become activated. Second, they are both non-inacti-
vating currents. Third, they are inhibited by intra-
cellular Mg?". On the other hand, there are marked
differences that set these two currents apart. The so-
dium current described by Baud et al. [6] requires
prolonged depolarization to become activated, which
is its signature feature [22]. Nay, on the other hand, is
activated within a few milliseconds from its fully de-
activated state at —40 mV holding potential. The
slowly activated sodium current described by Baud,
et al. [6] closely follows the Nernst equation with
respect to sodium concentration. Na, is less selective
for sodium. The slowly activated sodium current is
blocked by Li*, whereas Na, is permeable to both
Na™ and Li". In addition to these qualitative dif-
ferences, there are significant differences in the
measured values for voltage dependence and gating
charge [22]. Therefore it is likely that Na, and the
slowly activated Na®" current are mediated by dif-
ferent channel proteins.

Assuming a single-channel conductance on the
order of 10 pS, the Na, channel has to be present in
the membrane at a very high density, comparable to
that of membrane pumps, to yield whole-cell currents
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of the magnitude observed in our experiments. The
fact that Na, is inhibited by micromolar concentra-
tions of intracellular eosin suggests that Na, is me-
diated by a P-type ATPase. We propose that an
endogenous P-type ATPase assumes a channel-like
conformation upon membrane depolarization to
voltages greater than +40 mV, producing currents
several orders of magnitude larger than normal pump
currents [13, 21]. The time course of Na, activation
varies, depending on the composition of the intra-
cellular medium. This may reflect the tight interaction
between cytoplasmic composition (cytoplasmic fac-
tor, intracellular Mg?") and channel gating.
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